Ecology, Climate Change and Related News

Conservation Science for a Healthy Planet

Tag Archive: land use

  1. Biodiversity and nature’s benefits continue dangerous decline, scientists warn; Destruction of nature as dangerous as climate change, scientists warn

    Leave a Comment
    • Unsustainable exploitation of the natural world threatens food and water security of billions of people, major UN-backed biodiversity study reveals
    • 75% of Earth’s land areas are degraded– new report warns that environmental damage threatens the well-being of 3.2 billion people. Yet solutions are within reach.
    • Climate change will be the fastest-growing cause of species loss in the Americas by midcentury, according to this new set of reports from the leading global organization on ecosystems and biodiversity.
    • Rapid expansion and unsustainable management of croplands and grazing lands is the main driver of land degradation, causing significant loss of biodiversity and impacting food security, water purification, the provision of energy, and other contributions of nature essential to people. This has reached “critical levels” in many parts of the world…Wetlands have been hit hardest, with 87 percent lost globally in the last 300 years…Wetlands continue to be destroyed in Southeast Asia and the Congo region of Africa, mainly to plant oil palm.
    • Landmark reports highlight options to protect and restore nature and its vital contributions to people.

    March 23 2018 Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) See National Geographic story here; See GuardianUK news coverage here;  Read ScienceDaily article here

    Biodiversity — the essential variety of life forms on Earth — continues to decline in every region of the world, significantly reducing nature’s capacity to contribute to people’s well-being. This alarming trend endangers economies, livelihoods, food security and the quality of life of people everywhere, according to four landmark science reports written by more than 550 leading experts, from over 100 countries.

    Read the 5th new IPBES assessment report press release, on global land degradation and restoration report here.


    • Projections include:
      • The unprecedented growth in consumption, demography and technology will roughly quadruple the global economy in the first half of the twenty-first century.
      • Unless urgent and concerted action is taken, land degradation will worsen in the face of population growth, unprecedented consumption, an increasingly globalized economy, and climate change.
      • Land degradation and climate change are likely to force 50 to 700 million people to migrate by 2050.
      • By 2050, land degradation and climate change will reduce crop yields by an average of 10% globally, and up to 50% in certain regions.
      • The capacity of rangelands to support livestock will continue to diminish in the future, due to both land degradation and loss of rangeland area.
      • Biodiversity loss is projected to reach 38–46% by 2050.
    • Opportunities to accelerate action identified in the report include:
      • Improving monitoring, verification systems and baseline data;
      • Coordinating policy between different ministries to simultaneously encourage more sustainable production and consumption practices of land-based commodities;
      • Eliminating ‘perverse incentives’ that promote land degradation and promoting positive incentives that reward sustainable land management; and
      • Integrating the agricultural, forestry, energy, water, infrastructure and service agendas.
    • Remedial Options
      1. National and international responses to land degradation are often focused on mitigating damage already caused….Land degradation is rarely, if ever, the result of a single cause and can thus only be addressed through the simultaneous and coordinated use of diverse policy instruments and responses at the institutional, governance, community and individual levels.
      2. Land managers, including indigenous peoples and local communities, have key roles to play in the design, implementation and evaluation of sustainable land management practices.
      3. Proven approaches to halting and reversing land degradation include:
      • Urban planning, replanting with native species, green infrastructure development, remediation of contaminated and sealed soils (e.g. under asphalt), wastewater treatment and river channel restoration.
      • Better, more open-access information on the impacts of traded commodities.
      • Coordinated policy agendas that simultaneously encourage more sustainable consumption of land-based commodities.
      • Eliminating perverse incentives that promote degradation – subsidies that reward overproduction, for example – and devising positive incentives that reward the adoption of sustainable land management practices.
      • Rangelands:
        • Land capability and condition assessments and monitoring
        • Grazing pressure management
        • Pasture and forage crop improvement
        • Silvopastoral management
        • Weed and pest management
        • Rangelands with traditional grazing in many dryland regions have benefitted from maintaining appropriate fire regimes and the reinstatement or development of local livestock management practices and institutions. A variety of passive or active forest management and restoration techniques have successfully conserved biodiversity and avoided forest degradation while yielding multiple economic, social and environmental benefits.
      • Combating land degradation resulting from invasive species involves the identification and monitoring of invasion pathways and the adoption of eradication and control measures (mechanical, cultural, biological and chemical).
      • Responses to land degradation from mineral resource extraction include:
        • on-site management of mining wastes (soils and water)
        • reclamation of mine site topography
        • conservation and early replacement of topsoil
        • restoration and rehabilitation measures to recreate functioning grassland, forest, wetland and other ecosystems

      4. Examples of well-tested practices and techniques, both traditional and modern, to halt degradation of agricultural lands include:

      • Effective responses to avoid, reduce and reverse wetland degradation include:
        • controlling point and diffuse pollution sources
        • adopting integrated land and water management strategies; and
        • restoring wetland hydrology, biodiversity, and ecosystem functions through passive and active restoration measures, such as constructed wetlands


    Here is the America’s report from the IPBES- Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES).

    By the numbers- The Americas:

    Trends / data

    • 13%: the Americas’ share of world’s human population
    • 40%: share of world ecosystems’ capacity to produce nature-based materials consumed by people, and to assimilate by-products from their consumption
    • 65%: the proportion of nature’s contributions to people, across all units of analysis, in decline (with 21% declining strongly)
    • >50%: share of the Americas’ population with a water security problem
    • 61%: languages and associated cultures, in trouble or dying out
    • >95%: North American tall grass prairie grasslands transformed into human-dominated landscapes since pre-European settlement
    • 72% and 66% respectively: of tropical dry forest in Mesoamerica and the Caribbean have been transformed into human-dominated landscapes since pre-European settlement
    • 88%: Atlantic tropical forest transformed into human-dominated landscapes since pre-European settlement
    • 17%: Amazon forest transformed into human-dominated landscapes since pre-European settlement
    • 50%: decrease in renewable freshwater available per person since the 1960s
    • 200-300%: Increase in humanity’s ecological footprint in each subregion of the Americas since the 1960s
    • 9.5% and 25%: Forest areas lost in South America and Mesoamerica respectively since the 1960s
    • 0.4% and 43.4%: net gains in forest areas in North America and the Caribbean respectively since the 1960s
    • 1.5 million: approximate number of Great Plains grassland hectares loss from 2014 to 2015
    • 2.5 million: hectares under cultivation in Brazil’s northeast agricultural frontier in 2013, up from 1.2 million ha in 2003, with 74% of these new croplands taken from intact cerrado (tropical savanna) in that region
    • 15-60%: North American drylands habitat lost between 2000 and 2009
    • >50%: US wetlands lost since European settlement (up to 90% lost in agricultural regions)
    • >50%: decline in coral reef cover by the 1970s; only 10% remained by 2003

    Economic value of nature’s contributions to people

    • $24.3 trillion: estimated value per year of terrestrial nature’s contributions to people in the Americas (equivalent to the region’s gross domestic product)
    • $6.8, $5.3 and $3.6 trillion per year: nature’s contributions to people valued as ecosystem services in Brazil, USA and Canada respectively
    • >$500 million: annual cost of managing the impacts of invasive alien zebra mussels on infrastructure for power, water supply and transportation in the Great Lakes….
  2. After California’s most destructive fire season, a debate over where to rebuild homes and best policies to reduce future costs

    Leave a Comment
    • In light of experience showing that wind-blown embers can carry fire into suburban areas, Cal Fire plans to revise the maps next year and will likely include even more neighborhoods
    • I would tell a zoning commission in Claremont or wherever, ‘Buy up the land before it gets built. And if a fire comes through, buy up the land so it won’t burn again.’ ”
    • As a condition of approval…the developer should establish a mechanism to require purchasers to pay for any increased fire protection that the property will require

    Doug Smith December 16 read full LA Times article here

    After a destructive wildfire swept from Calabasas to Malibu in 1993, the head of the Santa Monica Mountains Conservancy stood on a mountaintop on live TV and made a radical proposal. He called for a “three-strikes” rule to limit the number of times recovery funds could be spent to help rebuild a home destroyed by wildfire 

    [Today] I think two strikes is enough and they ought to be bought out,” Edmiston said, after spending three days coordinating the conservancy’s crews on the Skirball, Rye and Creek fires.

    ….“I think what’s next is that every mayor, every town council and city planning board has to take this really seriously,” said Char Miller, professor of environmental analysis at Pomona College. “I would tell a zoning commission in Claremont or wherever, ‘Buy up the land before it gets built. And if a fire comes through, buy up the land so it won’t burn again.’ ”….

    ….“In determining how or why or when homes should be rebuilt after a fire, it helps to have science on where homes should or shouldn’t be placed,” said Alexandra Syphard, senior research scientist at the nonprofit Conservation Biology Institute. “The science isn’t fully there yet.”

    The current standard for fire prediction is embodied in maps produced during the 2000s by the California Department of Forestry and Fire Protection. Largely based on vegetation and topography, the maps cover broad swaths of the state with gradations from moderate to very high fire hazard. In light of experience showing that wind-blown embers can carry fire into suburban areas, Cal Fire plans to revise the maps next year and will likely include even more neighborhoods….

    Richard Halsey, director of the California Chaparral Institute, advocates holding local agencies financially responsible for fire losses of developments they approved. They should pay for all costs not covered by insurance and, if the owner rebuilds, all fire safety features, including exterior sprinkler systems….He favors methods to reverse the economic pressure, “everything from taking tracts of land at the urban periphery out of development, conservation easements. It might mean promoting higher insurance rates for homes built in high-risk areas such that the demand would go down.”

    …Edmiston said he has tallied 531 proposed new housing units being considered by the cities of Los Angeles and Calabasas in very high fire hazard zones in the Santa Monica Mountains. “We’re not talking about low income,” Edmiston said. “We’re talking about $1.5-million-plus homes.”

    He proposes a linkage between the right to build and the inevitable cost of firefighting and recovery. As a condition of approval, he said, the developer should establish a mechanism to require purchasers to pay for any increased fire protection that the property will require.

    “We’re talking about the climate change paradigm of the Santa Monica Mountains,” Edmiston said. “We’ve got to protect ourselves so that the rest of the city and the rest of the county don’t have to pay for putting these multimillion-dollar houses right next to the risk.”

  3. How Improved Land Use Can Contribute to the 1.5°C Goal of the Paris Agreement

    Leave a Comment
    • The goals of the Paris Agreement cannot be met without
      significant contributions from the land sector, including
      supply-side measures in forestry and agriculture, and demand-
      side measures related to healthier diets and reduced food waste.
    • Through significant emissions reductions and carbon removals, the
      land sector can contribute about 25 percent of the progress needed
      to meet the 1.5°C goal formulated under the Paris Agreement.
    • Land-sector emissions have to peak by 2020 and become net-zero
      by 2040–50 and net-negative thereafter.

    October 2017 Read full ClimateFocus article and report here

    Climate Focus’ How Land Use Can Contribute to the 1.5°C Goal of the Paris Agreement develops a roadmap of action for the land-use sector to meet its necessary contribution to the Paris Agreement. The analysis relies on a modelling of land-sector development trajectories optimizing least-cost pathways, a bottom-up assessment of mitigation potentials, and a correction of potentials for political feasibility. The Global Biosphere Management Integrated Assessment Model, a partial-equilibrium model developed by the International Institute for Applied Systems Analysis, formed the basis of our modelling.

    We determined the 40 countries with the highest technical mitigation potential and assessed the feasibility of mitigation action based on their political will and ability to realize this potential. Finally, we outlined 10 priority actions to reduce the land-use sector’s contribution to global warming. The actions range from avoided deforestation, restoration of forests, to diet shifts and reduced food waste.

    …We developed a roadmap of action that relies on:

    • effective forest protection (reduced deforestation)
    • enhanced restoration
    • sustainable forest management
    • halting peatland burning
    • peatland restoration
    • a shift to healthier diets
    • reduced food waste and losses
    • enhanced soil carbon sequestration
    • increased efficiency of synthetic fertilizer production and use
    • reduced emissions from rice paddies
    • reduced emissions from livestock (enteric fermentation)
  4. Insectageddon: farming can be more catastrophic than climate breakdown

    Leave a Comment

    George Monbiot Friday 20 October 2017

    …two other issues have such huge and immediate impacts that they push even this great predicament [of global warming] into third place.One is industrial fishing, which, all over the blue planet, is now causing systemic ecological collapse. The other is the erasure of non-human life from the land by farming.

    And perhaps not only non-human life. According to the UN Food and Agriculture Organisation, at current rates of soil loss, driven largely by poor farming practice, we have just 60 years of harvests left. And this is before the Global Land Outlook report, published in September, found that productivity is already declining on 20% of the world’s cropland.

    The impact on wildlife of changes in farming practice (and the expansion of the farmed area) is so rapid and severe that it is hard to get your head round the scale of what is happening. A study published this week in the journal Plos One reveals that flying insects surveyed on nature reserves in Germany have declined by 76% in 27 years. The most likely cause of this Insectageddon is that the land surrounding those reserves has become hostile to them: the volume of pesticides and the destruction of habitat have turned farmland into a wildlife desert….

  5. Why Hurricane Irma Could Hurt, a Lot: increase in coastal development leaves much in harm’s way

    Leave a Comment

    By BRAD PLUMER Read full NYTimes article here SEPT. 7, 2017

    ….Central and South Florida have grown at a breathtaking pace since 1990, adding more than 6 million people. Glittering high-rises and condominiums keep sprouting up along Miami Beach and other coastal areas. A lot more valuable property now sits in harm’s way….

    …But half of the expected rise in hurricane costs is the result of expected increases in coastal development. Today, according to the C.B.O., roughly 1.2 million Americans live in coastal areas at risk of “substantial damage” from hurricanes — defined as damage of at least 5 percent of average income. By 2075, that number is forecast to rise to 10 million.

    Population growth can also increase hurricane risks by adding newcomers who are unfamiliar with big storms or by clogging roads during evacuations, experts said.

    ….As of Wednesday, forecasters were still unsure where Irma might make landfall in Florida or how strong it will be when it does. But in almost any conceivable scenario, a hurricane today is likely to do more damage than a comparable storm in the past, if only because of increased development….

  6. Deforestation has double the effect on global warming than previously thought

    Leave a Comment
    • Even if all fossil fuel emissions are eradicated, if current rates of deforestation in the tropics continue through to 2100 then there will still be a 1.5 degree Celsius increase in global temperature
    • While carbon dioxide emissions from energy use must be the primary target of climate change mitigation efforts, land use and land cover change (LULCC) also represent an important source of climate forcing.
    • Tackling deforestation should be higher on the climate change agenda.


    In the fight against climate change, much of the focus rests on reducing our dependence on fossil fuels and developing alternative energy sources. However, the results of a new study suggest that far more attention should be paid to deforestation and how the land is used subsequently – the effects of which make a bigger contribution to climate change than previously thought.

    The research, conducted by Cornell University and published in the journal Environmental Research Letters,shows just how much this impact has been underestimated. Even if all fossil fuel emissions are eradicated, if current rates of deforestation in the tropics continue through to 2100 then there will still be a 1.5 degree Celsius increase in global temperature….

    Natalie M Mahowald et al. Are the impacts of land use on warming underestimated in climate policy? Environmental Research Letters. August 2017. DOI: 10.1088/1748-9326/aa836d

    Abstract: While carbon dioxide emissions from energy use must be the primary target of climate change mitigation efforts, land use and land cover change (LULCC) also represent an important source of climate forcing. In this study we compute time series of global surface temperature change separately for LULCC and non-LULCC sources (primarily fossil fuel burning), and show that because of the extra warming associated with the co-emission of methane and nitrous oxide with LULCC carbon dioxide emissions, and a co-emission of cooling aerosols with non-LULCC emissions of carbon dioxide, the linear relationship between cumulative carbon dioxide emissions and temperature has a two-fold higher slope for LULCC than for non-LULCC activities. Moreover, projections used in the Intergovernmental Panel on Climate Change (IPCC) for the rate of tropical land conversion in the future are relatively low compared to contemporary observations, suggesting that the future projections of land conversion used in the IPCC may underestimate potential impacts of LULCC. By including a “business as usual” future LULCC scenario for tropical deforestation, we find that even if all non-LULCC emissions are switched off in 2015, it is likely that 1.5°C of warming relative to the preindustrial era will occur by 2100. Thus, policies to reduce LULCC emissions must remain a high priority if we are to achieve the low to medium temperature change targets proposed as a part of the Paris Agreement. Future studies using integrated assessment models and other climate simulations should include more realistic deforestation rates and the integration of policy that would reduce LULCC emissions.

  7. Soil carbon debt from 12,000 years of human land use

    Leave a Comment
    • global carbon debt due to agriculture of 133 Pg C [133 Gt (billion metric tons of C) or 488 Gt CO2e] for the top 2 m of soil, with the rate of loss increasing dramatically in the past 200 years
    • assuming soil organic carbon (SOM) reaches a new steady state in 20 y (35, 44), this calculation suggests that 8 Pg C to 28 Pg C [up to 28 Gt (billion metric tons of C) or 103 Gt CO2e] or can be recaptured
    • there are identifiable regions which can be targeted for SOC (soil organic carbon) restoration efforts
    • [Note: Hansen et al 2017 calls for 150 Pg C or ~550 Gt CO2e extraction from atmosphere globally with massive greenhouse emissions reductions of 6%/year starting in 2021 to return to 350 PPM CO2 in atmosphere and to secure a safe climate (Holocene) for human civilization by 2100]
      • [Sanderman high end scenario would be 19% of CO2e extraction needed to secure safe climate by 2100 per Hansen above]

    Jonathan Sanderman, Tomislav Hengl and Gregory J. Fiske. Soil carbon debt of 12,000 years of human land use. PNAS September 5, 2017 vol. 114 no. 36 9575-9580

    Abstract: Human appropriation of land for agriculture has greatly altered the terrestrial carbon balance, creating a large but uncertain carbon debt in soils. Estimating the size and spatial distribution of soil organic carbon (SOC) loss due to land use and land cover change has been difficult but is a critical step in understanding whether SOC sequestration can be an effective climate mitigation strategy. In this study, a machine learning-based model was fitted using a global compilation of SOC data and the History Database of the Global Environment (HYDE) land use data in combination with climatic, landform and lithology covariates. Model results compared favorably with a global compilation of paired plot studies. Projection of this model onto a world without agriculture indicated a global carbon debt due to agriculture of 133 Pg C for the top 2 m of soil, with the rate of loss increasing dramatically in the past 200 years. The HYDE classes “grazing” and “cropland” contributed nearly equally to the loss of SOC. There were higher percent SOC losses on cropland but since more than twice as much land is grazed, slightly higher total losses were found from grazing land. Important spatial patterns of SOC loss were found: Hotspots of SOC loss coincided
    with some major cropping regions as well as semiarid grazing regions, while other major agricultural zones showed small losses and even net gains in SOC. This analysis has demonstrated that there are identifiable regions which can be targeted for SOC restoration efforts.

    Implications: This analysis indicates that the majority of the used portions of planet Earth have lost SOC, resulting in a cumulative loss of ∼133 Pg C due to agricultural land use. These SOC losses are on par with estimates of carbon lost from living vegetation primarily due to deforestation (40) and are nearly 100 Pg C higher than earlier estimates of land use and land use change-driven losses of SOC (41). Importantly, as Fig. 1 demonstrates, there are hotspots of SOC loss, associated with extensive cropping regions but also with highly degraded grazing land (SI Appendix, Fig. S9), suggesting that there are identifiable regions which should be targets for SOC restoration efforts.

    The potential to recover lost SOC may be more limited than is often assumed. The amount of SOC that has been lost historically can be thought of as the carbon sink potential of the soil (42). Our analysis has found that this sink potential is ∼133 Pg C (SI Appendix, Table S3). A widely repeated figure is that, with adoption of best management practices, two thirds of lost SOC can be recovered (42). If the two-thirds figure is accurate, then SOC sequestration has the potential to offset 88 Pg C (322 Pg CO2) of emissions. However, bottom-up estimates of the maximum biophysical potential for carbon sequestration on cropping and grazing land range from 0.4 Pg Cy−1 to 1.4 Pg Cy−1 (20, 43). Assuming SOC reaches a new steady state in 20 y (35, 44), this calculation suggests that 8 Pg C to 28 Pg C can be recaptured. Even the range of 8 Pg C to 28 Pg C is likely overly ambitious given the various social, economic, and technical constraints on universal adoption of best management practices (45), suggesting that the amount of the carbon sink that can be filled is on the order of, at best, 10 to 30% globally and may well be <10%.

    Conclusions: Our data-driven statistical analysis confirms that agricultural land use is a significant driver of SOC levels. ….This analysis also demonstrated that not all land use is associated with large losses in SOC, particularly in regions with naturally infertile soils. These results provide a basis for national and international policies to target SOC restoration efforts but also suggest that more effort needs to be put into collecting, integrating, and using legacy soil profile data, especially historic data 50+ y old, so that even more reliable models of SOC dynamics can be produced.


  8. Urban land transformation and electricity production impact river ecosystems on much larger scale

    Leave a Comment
    • The results indicate that urban land transformation and electricity production together affect seven percent of U.S. streams, which influence habitats for more than 60 percent of all North American freshwater fish, mussel, and crayfish species.

    August 23, 20 DOE/Oak Ridge National Laboratory  Read full ScienceDaily article here

    New mapping methods can help urban planners minimize the environmental impacts of cities’ water and energy demands on surrounding stream ecologies.

    Using streamflow data from the U.S. Geological Survey, the researchers mapped changes to natural hydrology to assess how infrastructure development and competition over water resources affects the environment at a national scale.

    The results indicate that urban land transformation and electricity production together affect seven percent of U.S. streams, which influence habitats for more than 60 percent of all North American freshwater fish, mussel, and crayfish species.

    …In the five cities, urban land transformations negatively affected more stream length overall than any other factor considered, including electricity production. The introduction of roads, buildings, and other impervious surfaces alters the natural water cycle, displaces water supplies for downstream communities and can threaten the loss of rich and diverse aquatic species.

    …”Both the source and solution to global environmental challenges may lie in the hands of cities. Unfortunately, the changes we discuss are highly transformative, not cheap,” McManamay said. “Our goal here is to give cities a way to look at the big picture, so to speak, and to generate metrics that will help them move toward more environmentally sound policies as they continue to develop.

    Ryan A. McManamay et al. US cities can manage national hydrology and biodiversity using local infrastructure policy. Proceedings of the National Academy of Sciences, 2017; 201706201 DOI: 10.1073/pnas.1706201114

  9. Climate change and habitat conversion combine to homogenize nature- report on Costa Rican bird studies

    Leave a Comment
    • Land use change and drought favor the same species and threaten the same species so we may be losing biodiversity faster than we previously thought when we were studying these separately
    • Key strategies include protecting areas of wetter forests that expected to stay wet in the future; targetting conservation on wet-forest species that are particularly sensitive to habitat conversion and climate change; and incentivizing  landowners in wet regions to create or maintain patches of forests near or within their farms to better balance food production and biodiversity.

    August 18, 2017 University of California – Davis  Read full ScienceDaily article here

    Climate change and habitat conversion to agriculture are working together to homogenize nature, indicates a study in the journal Global Change Biology led by the University of California, Davis.

    In other words, the more things change, the more they are the same.

    While the individual impacts of climate change and habitat conversion on wildlife are well-recognized, little is known about how species respond to both stressors at once.

    In northwest Costa Rica, the study’s authors surveyed birds and plants at 120 sites that included rainforests, dry forests and farmland to determine how habitat conversion and climate-change-induced droughts affect tropical wildlife. They found that different bird species thrive in drier versus wetter areas of forests. In farmlands however, birds associated with dry sites were found everywhere, even in the wettest sites.

    Green-headed tanager (Tangara seledon). Credit: © Wilfred / Fotolia
    Across Central and South America, we are seeing large areas being converted from native forest to agriculture, and droughts are becoming more frequent,” said lead author Daniel Karp, an assistant professor in the UC Davis Department of Wildlife, Fish and Conservation Biology. “Both of these global pressures are favoring the same species and threatening the same species This means we may be losing biodiversity faster than we previously thought when we were studying climate change and habitat conversion individually.”
    most vulnerable birds at the study sites were those in the wet forests, which include tropical birds like tanagers, manakins, and woodcreepers. He noted that birds in the agricultural sites — such as blackbirds, doves, and sparrows — were more similar to those found in the dry forest, where there is less of a tree canopy and more grass cover….
    Daniel S. Karp, Luke O. Frishkoff, Alejandra Echeverri, Jim Zook, Pedro Juárez, Kai M. A. Chan. Agriculture erases climate-driven β-diversity in Neotropical bird communities. Global Change Biology, 2017; DOI: 10.1111/gcb.13821
  10. Positive Disruption: LIMITING GLOBAL TEMPERATURE RISE TO WELL BELOW 2 Cº; focus on energy, ag and land use

    Leave a Comment




    From the intro:

    Today, many experts doubt that energy systems can decarbonize fast enough to prevent this scenario. But this belief is both dangerous and wrong—dangerous because despair undercuts the will to act; and wrong because this view does not take into account events already taking place that indicate a possible pathway to a rapid energy transition.

    This paper describes scenarios for transitions in energy, agriculture, and land use that together are sufficient to limit global average temperature increase to 1.5–2 C°. Unlike conventional modeling approaches, these scenarios entail patterns of disruption, innovation, and nonlinear change, harnessed at global scale, that mirror the episodic and disruptive ways that individual industries and the economy as a whole have changed historically. The great transitions in the economy, such as the Industrial Revolution, have been driven by such self-reinforcing patterns of change. Their signs are all around us….