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INTRODUCTION 
 
Soil organic carbon (hereafter ‘soil carbon’) is an important natural resource that 
plays a critical role in helping natural and managed ecosystems mitigate and adapt 
to climate change (Bossio et al. 2020). As a primary part of soil organic matter, soil 
carbon also provides many other adjacent services, including supplying nutrients to 
plants, providing food and habitat for soil biodiversity, storing and purifying water, 
and contributing to soil structure (Bradford et al. 2019). Unfortunately, a significant 
portion of soil carbon has been lost globally due to past land use and 
mismanagement (Sanderman et al. 2017), a trend that is now exacerbated by 
climatic stressors such as drought (Deng et al. 2021). Thus, there is both a strong 
need and opportunity to protect and rebuild soil carbon through stewardship, which 
would result in a myriad of benefits to humans and the ecosystems on which we 
depend. 
 
Accurate estimates of regional soil carbon levels are needed to guide both 
policymakers and practitioners in their endeavor to protect and rebuild this critical 
natural resource (Carey et al. 2020). From a policy perspective, access to estimates 
of soil carbon can inform carbon inventories and climate scoping plans (e.g., CARB 
2017), and can help to spatially prioritize protection of high soil carbon areas. It can 
also ensure funds and resources are allocated to restoration projects in areas with 
the greatest need or potential.  From a land management perspective, the same 
information can help producers better understand how their land compares to the 
broader landscape, identify areas where low levels of soil carbon may be a resource 
concern, set reasonable targets, and execute management strategies through 
Carbon Farm Plans. Combined, these actions can help to de-risking public and 
private investment in soil carbon stewardship. 
 
Collecting empirical data via in-field soil sampling is a reliable way to produce 
estimates of soil carbon levels. However, collecting soil carbon data at high 
densities across broad spatial scales is challenging. Digital soil mapping offers a way 
to leverage empirical field measurements to generate continuous estimates of soil 
carbon across a property, a region, and even a continent—filling in the gaps and 
thereby supporting both policy and practice.  
 
For the past seven years, Point Blue has been collecting soil carbon data across 
California’s rangelands using standardized monitoring methods as part of the 
Rangeland Monitoring Network (RMN; Porzig et al. 2018). This effort has produced a 
dataset that offers a unique opportunity to map soil carbon levels across California’s 
rangelands using digital soil mapping approaches. With increasing interest in 
managing soil carbon from policymakers and practitioners, we aimed to use these 
data to create predictive maps of soil carbon stocks across California’s rangelands. 
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OBJECTIVES 
The objectives of this project were to combine RMN soil data with publicly available 
geographic information service (GIS) data to predict soil carbon across California’s 
rangelands; to determine the accuracy of those predictions; and to produce maps 
that can be used to inform carbon stewardship of these rangeland soils. In addition 
to predicting static (“baseline”) carbon stocks, we aimed to predict changes in 
carbon stocks between 2015-2021 as well. As an additional way to identify sites 
that are ripe for management intervention, we also compared surface carbon 
stocks with deeper carbon stocks, with the assumption that sites with less surface 
carbon than expected based on deep carbon values have the potential for 
improvement. Our final objective was to assess how soil carbon changed over time 
at sites that had lower than expected surface carbon, which would provide 
additional insights to guide strategic management interventions. 
 
 

METHODS 
To achieve our objectives, we combined existing soil data collected through the 
RMN with explanatory variables that we 
expected to be good predictors of soil 
carbon stocks at sites that we sampled, 
and then evaluated model fit. Then, using 
the same GIS layers for predictor 
variables, we applied the model to predict 
carbon across unsampled spatial 
locations and generated predictive maps 
for the region. We also analyzed the 
unexplained variation between soil 
carbon stocks in shallow and deeper soil 
horizons to estimate legacy effects of 
land and inform future management. This 
process is described in more detail below. 

 

Study Area 

For this project, we focused on the 
rangeland areas of central and northern 
California which represented the 
environmental conditions within which we 
have field samples. We defined potential 
rangelands using a union of the rangeland 
extent in the National Land Cover Database (NLCD) Rangeland Components 

Figure 1. Project study area of rangelands in Northern and 
Central California, set by ecoregion boundaries and potential 
rangeland habitat as described in text. 
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Dataset (Rigge et al. 2020) and the classes of ‘shrub’ or ‘herbaceous’ in the 
California Department of Forestry and Fire Protection’s vegetation map (CALFIRE-
FRAP 2014).  We then masked this to the California Ecoregions (Griffiths et al. 2016) 
of the Central Valley, Central California Foothills, Coast Range, Cascades, and 
Eastern Cascades (Figure 1). 

Soil Field Data 

Soil carbon concentrations were measured from 0-10 cm and 10-40 cm depth at 
282 sites across California. Samples were collected in a standardized way and 
analyzed at University of Idaho Analytical Lab via dry combustion. Each point is in 
one of three cohorts, and each cohort was sampled on a rotating basis every three 
years from 2015 – 2021. Bulk density measurements were also taken at each site 
and used to convert carbon concentrations to stocks on a fixed mass basis (Mg C / 
hectare).  This information was then used to calculate average carbon stocks for 
each point across the time period as well as an average rate of yearly change. See 
Carey et al. (2020) for a full description of collection methodology. 

 

Variable Selection 

We selected initial explanatory variables based on a priori knowledge, which was 
informed in part by two reviews of soil carbon modeling: Gomes et al (2019) and 
Keskin et al. (2019). We used prior work that focused on modeling soil carbon in the 
Pescadero area of California to further focus this list (Veloz et al., 2021) and then 
eliminated any variables for which there were not statewide layers available. This 
ruled out using land management practices (e.g., mowing, burning, grazing), some 
soil information (e.g., water infiltration time and content of iron and aluminum 
oxides; we were limited to data available in Soil Survey Geographic Database 
[SSURGO]), and a detailed land use history, among other things. These are all factors 
that are known to relate to soil carbon across space and time (Delgado-Baquerizo et 
al. 2018), but for which we were unable to find the necessary datasets for inclusion.  

With that in mind, soil carbon data points were attributed with the following 
explanatory data: 

● Landcover type from the National Land Cover Database (NLCD) in 2016, 30 
m resolution (Dewitz 2019). Most of the classes for this dataset are non-
rangeland classes and are used to describe the land cover across the United 
States. 

● Elevation from the Shuttle Radar Topography Mission Digital Elevation 
Dataset, 30 m resolution (Farr et al 2007). 
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● Climate data, including monthly average winter minimum temperature (Dec – 
Feb) and average summer maximum temperature (Jun – Aug), as well as 
annual precipitation, runoff, recharge, storage, and climactic water deficit, 
averaged across 2016 – 2021 from California’s Basin Characterization Model 
v8, 270m resolution (Flint and Flint, 2017). 

● Nine measures of annual vegetative productivity derived from MODIS 
Normalized Difference Vegetation Index (NDVI) data: amplitude (AMP), 
duration (DUR), end of season NDVI (EOSN), end of season time (EOST), 
maximum NDVI (MAXN), maximum growing season time (MAXT), start of 
season NDVI (SOSN), start of season time (SOST), and time-integrated NDVI 
(TIN), averaged 2016 – 2021, 250m resolution (Meier and Brown 2014). 

● Fractional landcover of bare ground, litter, annual, annual herbaceous, shrub, 
and sagebrush as well as sagebrush and shrub height in 2016 from the NLCD 
Rangeland Components dataset, 30m resolution (Rigge et al. 2020). 

● Soil class, suborder, order, and drainage class; and the weighted average by 
horizon of pH, sand, silt, and clay from SSURGO (Soil Survey Staff, 2022). We 
used the gridded version of the SSURGO data, which has a nominal resolution 
of 10m, but this is derived from a shapefile with non-standard sampling.  For 
example, if SSURGO reported two horizons at a point, one with a depth of 0 - 
8 cm and one with a depth of 8 - 100 cm, the SSURGO values for the 0 - 10 
cm model would be (4 * 0-8cm val + 1 * 8-100 cm val) / 5. After attribution, we 
calculated the geometric mean particle size from soil texture data using the 
method described in Carey et al. (2020).  

Prior to modeling carbon stocks, we conducted an exploratory analysis of all 
explanatory variables to determine their suitability for modeling. We eliminated 
variables that were highly correlated with one another. If two explanatory variables 
were highly correlated (r > 0.8), we eliminated the one that had higher average 
correlation with other variables. This resulted in removing the following variables 
from the model: sagebrush cover, big sagebrush cover, annual herbaceous cover, 
shrub height, sagebrush height, AMP, DUR, EOSN, and EOST.   

A second criteria removed variables that were not well sampled with our data 
points. For categorical data, we eliminated all variables that had categories covering 
more than a quarter of our study area for which we had three or fewer sample 
points. This removed soil class and suborder. For continuous data, we first checked 
that no variables had >90% of the samples within <10% of the data range. We 
additionally ensured that variables had sufficient variation across the study area. 

Finally, we removed soil drainage class from the model because it was redundant 
with the more precise, continuous recharge and climatic water deficit from the 
California Basin Characterization data. 
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Modeling Carbon Dynamics 

Once input variables were selected, we performed a round of exploratory modeling 
to determine the best model parameters. We applied boosted regression trees 
using the gbm.step function in the dismo package in R (Hijmans et al. 2022) as 
described by Elith et al (2008). Boosted regression trees is a machine learning 
algorithm that combines a set of very simple classification trees. The algorithm  
iteratively adds new trees to the set and at each step focuses on explaining the 
remaining unexplained variation from the set of previous trees. The analyst selects 
the final settings of parameters for the algorithm by balancing the ability of the 
model to explain the variation in the input data while also being able to predict to 
data withheld from the creation of the mode.  

We tested the following combinations of input parameters: learning rates of 0.0001, 
0.0005, 0.001, 0.005, 0.01, 0.05, and 0.1; tree complexities of 1, 2, 3, and 4; and bag 
fractions of 0.6, 0.7, and 0.8. We ran all combinations once with categorical 
variables included and once without. We were concerned with including categorical 
variables since we rarely had adequate field samples that included a sufficient 
sample of all classes in each variable. Models were evaluated against the training 
(data used to build the model) and testing data (data withheld from model creation 
used to validate predictions) using the metrics of tree count, correlation, cross-
validated correlation, deviance explained, and cross-validated deviance explained. 

We went through this process for a number of different calculated soil carbon 
response variables and depths. As soil carbon was measured at two depths, we 
modeled 0 – 10 cm, 10 – 40 cm, and a combined 0 – 40 cm.  For each depth, we 
began by modeling static soil carbon stocks, which were calculated by averaging 
soil carbon values at each point across years.  Given that average soil carbon stock 
values were approximately 60 times larger than changes over time, we felt justified 
in modeling the average rather than, for instance, the most recent time point.     

However, we were also interested in assessing the change over time. To do this, we 
started by modeling the yearly change in soil carbon using a Gaussian link. We then 
created a hurdle model by first using a logistic link boosted regression to predict 
change / no change (classing change of < 10% as 0) and then using the 
aforementioned method to predict the amount of change for those points that were 
predicted to change. 

We tested the Gaussian link model applying several different filters to the data to 
gauge their impact on model performance. We ran the model first on all of the data. 
Then, to focus in on points that were changing, we ran the model with all points that 
had relatively constant values of soil carbon across years removed.  We tested two 
removal thresholds: 0.1 Mg C ha/yr, which is on the low end for what is reported in 
the literature (Conant et al. 2017) and 0.5 Mg C ha/yr, chosen based on the 
distribution of data. To prevent large changes from skewing the model, we also ran 
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the model removing points that had extremely large changes across the 3 or 6 year 
sample period (total change > 30% of initial value) or changes that were deemed 
unreasonable or unlikely (change > 8 Mg C ha/y).  We also tried several different 
transformations of the data, including a binary change/no change threshold, a log 
transformation, and a multiplicative transformation. 

As another way to identify areas in need of management intervention, we compared 
surface carbon with deeper carbon. In general, we expect the carbon at deeper 
depths would be correlated with the carbon in shallower depths. However, we also 
expect that carbon in shallower soil depths would be more sensitive to management 
actions than carbon within deeper depths (Ward et al. 2016).  The relationship 
between the two depths should therefore tell us something about locations that are 
underperforming based on past management or other factors. To illustrate areas 
where this may be the case, we conducted two linear regressions: one of the 
measured points comparing surface to deep carbon (linear regression 1), and one of 
the mapped predictions of soil carbon at 10 - 40 cm depths to explain the mapped 
predictions of soil carbon at 0 - 10 cm (linear regression 2). We then mapped the 
residuals (mapped prediction - prediction from linear regression) from the second 
regression model. Negative values on the resulting map can be interpreted as areas 
where management or other factors may be having an undesirable effect on soil 
carbon at shallower depths.  

To extend our inference, we used the residuals of the first regression model to 
explain the observed annual change in carbon stocks at each point based on our 
initial and final field samples. We expect that variation in annual rates of change in 
carbon stocks will significantly correlate with areas that have higher or lower than 
expected surface carbon based on the previous analysis, and that this will help to 
further our understanding of areas to target for future management. 

All analysis and most data preparation was performed in R v4.2, using the packages 
dismo (Hijmans et al. 2022), dplyr (Wickham et al. 2022), gbm (Greenwell et al. 
2020),  raster (Hijmans 2022), and sp (Pebesma and Bivand 2005). Mapping and 
some data preparation was also performed in ArcMap v10.8 (ESRI 2021).  
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OUTCOMES AND CONCLUSIONS 

Mapping Average Carbon Stocks 

Soil carbon stocks across our network ranged from 3.62 - 60.27 (Mg C/ha) for 0-10 
cm and 15.94 - 230 (Mg C/ ha) for 10-40 cm. These values fall within what we would 
expect for semi-arid rangelands of California (Carey et al. 2020; Silver et al. 2010, 
Silver et al. 2018).   

We were able to 
model average soil 
carbon stocks with a 
high level of 
accuracy.  Our best 
model for the 0 - 10 
cm depth had a 
correlation between 
the observed 
average soil carbon 
stocks and predicted 
soil carbon stocks of 
0.723 (SE ± 0.022; 
residual deviance = 
27.1%).  Our best 
model for the 10 - 40 
cm depth was slightly 
better, having a 
correlation of 0.845 
(SE ± 0.023; residual 
deviance =  17.5%. 
Our best model for 
the combined 0 - 
40cm depth had a 
correlation of 0.847 (SE 
± 0.015; residual 

Figure 2. Observed vs. predicted soil carbon at the 0 - 10 cm depth. The black line is the 
1:1 line. Points above the line are where predictions are less than observed. Points below 
the line are where predictions are greater than observed. 
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deviance = 17.9%).  Observed vs predicted values are shown in figures 2 and 3 for 
the 0 - 10 cm and 10 - 40 cm depth models respectively. 

Models without 
landcover included 
as a categorical 
variable (NLCD) 
performed similarly 
to or slightly better 
than models with 
landcover.  However, 
given the lack of 
sampling in non-
rangeland (i.e., most) 
landcover 
categories, we chose 
to use the models 
without categorical 
landcover included 
as a covariate. 

In the 0 - 10 cm 
model, the most 
important predictor was 
the start of season 
NDVI, with a relative 
influence of 22.1% (Table 1, left column).  This was followed by the average minimum 
temperature in winter (17.6%), the start of season time (8.3%), average max 
temperature in summer (6.3%), and maximum NDVI (6.3%).  Eight predictors had a 
relative influence of between 2 and 5%; they were, in descending order, shrub cover, 
growing season duration, climatic water deficit, bare ground, annual recharge, 
maximum growing season time, annual runoff, and time-integrated NDVI.  No other 
predictors had a relative influence greater than 2%.   

In the 10 - 40 cm model, the most important predictor was the average minimum 
temperature in winter, which had an importance of 45.7% (Table 1, right). Start of 
season NDVI came next (13.5%), followed by average maximum summer 
temperature (11.8%).  Seven predictors had a relative influence of between 2 and 
5%; they were, in descending order, shrub cover, bare ground, growing season 
duration, climatic water deficit, mean soil particle size, start of season time, and 
maximum NDVI.  The remaining variables had a relative influence of less than 2%. 

 

 

Figure 3. Observed vs. predicted soil carbon at the 10 - 40 cm depth. The black line is the 
1:1 line. Points above the line are where predictions are less than observed. Points 
below the line are where predictions are greater than observed. 
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Table 1. Relative influence of predictor variables in our top models of average soil carbon on rangeland 
points in central and northern California.  The left two columns show the relative influence of variables in 
the 0 - 10 cm model; the right two columns show the relative influence of variables in the 10 - 40 cm 
model. 
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Our model of carbon at 10 - 40 cm was heavily driven by one variable, winter 
temperature; its relative influence was twice that of the top variable in the 0 - 10 cm 
model.  Temperature variables were more important in the 10 - 40 cm model than 
the 0 - 10 cm model.  Winter minimum temperatures and summer maximum 
temperatures had a combined influence of 57% in the deeper model, as compared 
to 26% in the shallow model. 

In contrast, vegetation phenology metrics were more influential in predicting carbon 
stocks at the shallower depth of 0 - 10 cm than at the 10 - 40 cm depth.  The top 
shallow depth models had SOSN and SOST as the first and third variables in 
importance (average influences of 22 and 12%, respectively), with MAXN, MAXT, 
and DUR all having an average influence of 3 - 6%.  The deep models placed only 
one phenology metric in the top three variables, SOSN had the second highest 
relative influence. 

Neither model was heavily influenced by the fractional land cover variables included. 
Shrub, litter, and bare ground coverage had relative influences of <5% in both 
models.  Included soil characteristics (soil particle size, pH, and soil water storage) 
had even less impact, with a maximum influence of 2.5% (soil particle size, 10 - 40 
cm). 

Maps of our predicted soil carbon are provided in figures 4 and 5. We predicted 
higher soil carbon stocks in areas with greater coastal influence for both depths. 
Additionally, we predicted relatively high soil carbon stocks in the very north-east of 
California within the Modoc plateau. In contrast, we predicted relatively low carbon 
stocks at both depths around the border of the Central Valley and moderate soil 
carbon in the foothills of the Sierra Nevada Mountains (Figures 4 and 5). These 
patterns are expected based on known relationships between soil carbon storage, 
temperature, and precipitation (Delgado-Baquerizo et al. 2018).  
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Figure 4. Predicted soil carbon stocks in California rangelands at 0 - 10 cm depth. An online version of the map is available here 
https://www.arcgis.com/home/item.html?id=cd4d39fa5cb44216a1b064e3120b8ba0 

 

https://www.arcgis.com/home/item.html?id=cd4d39fa5cb44216a1b064e3120b8ba0
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Figure 5. Predicted soil carbon stocks in California rangelands at 10 - 40 cm depth. An online version of the map is available from 
here https://www.arcgis.com/home/item.html?id=4ce144c080144dbbbbbc10bac9933e6b 

We expected that carbon stocks at shallower depths should be highly correlated 
with carbon stocks at deeper depths. In agreement with our expectation, we found 
that observed average carbon stocks at 10 - 40 cm depth is a very good predictor of 
observed carbon average carbon stocks at 0 - 10 cm (R2 = .895, p < 0.001, slope = 
0.2020 ± 0.004, intercept = 2.300 Figure 6). Deviations from this pattern may signal 
locations where management or other factors are having an influence on surface 
carbon stocks.  

https://www.arcgis.com/home/item.html?id=4ce144c080144dbbbbbc10bac9933e6b
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Given that we found such a tight fit 
between the observed carbon stocks at 
shallower and deeper depths, we then 
used the mapped predictions of carbon 
stocks to visualize where on the 
landscape carbon stocks in shallower 
depths are deviating from expectations 
based on soil carbon stocks at deeper 
depths. We found a significant linear 
regression explaining predicted soil 
carbon at 0 - 10 cm using predicted soil 
carbon at 10 - 40 cm with similar 
parameters that we found when 
analyzing the observed soil carbon 
stocks (p<0.001, slope 0.252, +- 0.0001, 
intercept=2.867). The R2 of the 
regression was 0.78 meaning that just 
over 20% of the variation in predicted soil 
carbon at 0 - 10 cm is not well explained 
by predicted soil carbon at 10 - 40 cm. 
We found that much of our study 
area has higher predicted soil carbon 
at 0 - 10 cm than we would expect 
based on the predicted soil carbon at 
10 - 40 cm (Figure 7). However, 
many of the locations that have the 
highest predicted soil carbon at the 
0 - 10 cm depth (Figure 4) also have 
lower predicted soil carbon than we 
would expect based on the 
predicted soil carbon at 10 - 40 cm 
depth (red areas in Figure 8). This 
aligns with research that has 
concluded carbon-rich soils are 
more sensitive to losses with 
drought and management than 
carbon-poor soils (Canarini et al. 
2017, Bellamy et al. 2005).  In 
contrast, the high predicted soil 
carbon at 0 - 10 cm depth in the 
Modoc Plateau (Figure 4) is largely 

Figure 7. Linear regression of observed average soil carbon 
stocks at 10 - 40 cm depth vs observed average soil carbon 
stocks at 0 - 10 cm depth. Each point represents a field 
sample. The blue line is the predicted slope of the regression 
and the shaded area is the standard error. 

Figure 6. Scatter plot and linear regression of predicted soil carbon at 
10 - 40 cm depth vs. predicted soil carbon at 0 - 10 cm depth. The 
blue line represents the predicted slope from the linear regression. 
Points above the line have positive residuals and points below the 
line have negative residuals. Each point is a pixel from the predicted 
maps in figures 4 and 5. 
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higher than we would expect based on predicted soil carbon at the 10 - 40 cm 
depth, providing nuance to our results (blue pixels Figure 8).  
 

 
Figure 8. Map of the residuals from the linear regression in Figure 6. Red areas indicate locations where predicted soil carbon at 
0 - 10 cm is lower than we would expect based on the soil carbon predicted at 10 - 40 cm. Values close to 0 are where predicted 
soil carbon at 0 - 10 cm is about what we would expect based on predictions at 10 - 40 cm. Blue areas are where soil carbon at 0 
- 10 cm is greater than what we expect based on predicted soil carbon at 10 - 40 cm depth. Online version of the data is 
available here https://www.arcgis.com/home/item.html?id=bded3890324e4629b8a32c128c12af39 

https://www.arcgis.com/home/item.html?id=bded3890324e4629b8a32c128c12af39
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Mapping Change Over Time 

We found relatively large rates of carbon change in our observed data. The average 
annual change was -0.59 Mg C/ha/y with 50% of the values between -1.38 and 0.40 
Mg C/ha/y, which falls within the higher end of what is typically documented in the 
literature for rangeland systems (Conant et al. 2017).  

Unfortunately, overall performance in modeling the change in soil carbon was 
extremely poor.  No model explained more than 33% of the observed variation in 
yearly soil carbon change. Our best model had a cross validated correlation of 0.236 
and a residual deviance of 67%.  Moreover, models that did converge adequately 
were likely overfit, as cross-validated correlations averaged about 70% lower than 
the training correlation (0.15 vs 0.54). 

In all tested methods, models of change converged too quickly (number of trees < 
50) except at the lowest learning rates and tree complexities. This suggests either 
that there was insufficient variation in the response variable compared to our 
explanatory variables or that none of the chosen explanatory variables were very 
useful in predicting change. As outlined in the methods above, we tested several 
ways of filtering and transforming our response variable (change in carbon), none of 
which significantly changed model performance. None of our data filtering or 
transformations made a significant impact on modeling, showing broadly similar 
explanatory power compared to the unfiltered and untransformed data and also 
showing evidence of overfitting.  Modeling change as either positive (>0) or 
negative (<0) was unsuccessful, with the best model having a cross-validated 
correlation of only 0.094. The initial binary hurdle model of change / no change 
fared slightly better, with our best model having a cross-validated correlation of 
0.21.  These also showed strong evidence of overfitting, with cross-validated 
correlations averaged about 70% lower than the training correlation across all 
models (0.58 vs 0.16).  

We believe that there are two major causes for our inability to accurately predict 
change in soil carbon.  First, the distribution of yearly carbon change was 
challenging.  While the change was normally distributed, most points experienced 
little change, making it hard for the model to pick out a signal. The fact that models 
usually converged too quickly indicates that there was insufficient variation in the 
response variable, at least with regards to our predictor variables.   
 
Second, none of our variables appear to have a large causal relationship with the 
change in soil carbon over a period of three to six years.  Our initial exploratory 
modeling showed hints of this, as no covariate had a correlation with soil carbon 
change of > 0.15. This finding—which is borne out by looking at the correlations of 
individual covariates with carbon change–is surprising given we included covariates 
that are known to moderate carbon dynamics (Singh et al. 2018). Still, predictors 
such as calcium content, mineralogy (iron and aluminum oxides), and historical land 
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use—which were not included here—have also been shown as important 
(Rasmussen et al. 2018). It’s possible that their inclusion would have improved 
model performance. 
 

Investigating patterns of changes in carbon stocks 

To identify whether areas that have unexpectedly low surface carbon are also losing 
carbon over time, we used the residuals from the linear regression in Figure 7 to test 
for significant correlations with observed changes in soil carbon stocks at the 
shallower depth. When we used the residuals from this linear regression as a 
predictor of the annual change in soil carbon stocks at the 0 - 10 cm depth, we 
found a small but significant negative correlation (R2 = 0.05, p < 0.001, Figure 9). 
While this model did not explain much of the variation in the data, it does indicate 
that sites with less average soil carbon at 0 - 10 cm depth than predicted by average 
soil carbon at 10 -40 cm depth are experiencing the highest positive annual rates of 
carbon change. The inverse was true at sites with more soil carbon at 0 - 10 cm than 
expected based on average soil carbon at 10 - 40 cm depth (Figure 9). These results 
extend the conclusions above, which suggest that carbon-rich soils are more 
susceptible to loss than relatively carbon-poor soils.  

      

  

Figure 9. Linear regression of the residuals from the regression in Figure 
8 vs the observed annual rate of change in carbon stocks. Each point 
represents a field sample. The blue line is the predicted slope of the 
regression and the shaded area indicates the standard error. 
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Conclusions 
Despite being limited by the somewhat coarse resolution of spatial data, we were 
able to produce accurate spatial predictions of soil carbon stocks in rangelands 
across the state of California. As expected, we found that soil carbon levels were 
generally highest in cooler, wetter sites like those of the Central Coast. The five 
counties with the largest soil stocks were, in descending order Monterey, San Luis 
Obispo, Modoc, Lassen and Kern (Appendix 2). Some of our results also confirm that 
climate change is likely to negatively affect rates of carbon storage in rangeland 
soils. Indeed, our models consistently predicted lower carbon stocks in areas with 
more extreme seasonal temperatures and with higher rates of climatic water deficit. 
Although there is still high uncertainty among future climate projections related to 
changes in precipitation, increasing summer temperatures are ubiquitously 
predicted (Bedsworth et al 2018). This will act to increase climatic water deficit and 
dry out soils, which based on our results and others, will result in negative effects on 
soil carbon stocks. 
 
Our results also join a growing body of literature that suggest carbon-rich soils are 
more susceptible to losses with drought or mismanagement than their relatively 
carbon-poor counterparts. It stands to reason then, that actions to protect and 
restore soil carbon through management may be most important in these higher 
carbon areas. These actions should focus on managing vegetation productivity–
including growing season length–through, for instance, prescribed grazing, compost 
applications, or range seeding; our models found that variables related to 
vegetation productivity were the best predictors of soil carbon stocks. Future 
monitoring efforts that are designed to evaluate the predictions we produce in this 
report will serve an important role in continuing to improve our understanding of 
carbon dynamics of California’s rangelands across space and through time.  
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Appendix 1. Partial Dependence Plots 
Partial dependence plots of the top nine influential variables in the 0 - 10 cm model 
of average soil carbon. Each plot shows predicted soil carbon stocks (scaled to 
mean of 0) across the range of values of each explanatory variable. All other 
variables are held constant at their mean value to illustrate the general shape of the 
predicted response. The red line is a smoothed version of the prediction. Vertical 
ticks on the x axis indicate where there are higher densities of data points used to 
build the model. 
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Figure A2. Partial dependence plots of the top nine influential variables in the 10 - 
40 cm model of average soil carbon. Each plot shows predicted soil carbon stocks 
(scaled to mean of 0) across the range of values of each explanatory variable. All 
other variables are held constant at their mean value to illustrate the general shape 
of the predicted response. The red line is a smoothed version of the prediction. 
Vertical ticks on the x axis indicate where there are higher densities of data points 
used to build the model. 
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Appendix 2. Estimated Carbon Stocks on Rangelands by 

County 
 

  
0 - 10 

cm 
10 - 40 

cm   
0 - 10 

cm 
10 - 40 

cm 

County Tg C Tg C County Tg C Tg C 

Monterey 8.46 26.65 Madera 1.49 4.29 

San Luis Obispo 8.13 26.31 Napa 1.44 4.21 

Modoc 8.51 25.15 Butte 1.52 3.94 

Lassen 6.39 18.59 Solano 1.29 3.78 

Kern 5.35 15.92 Calaveras 1.33 3.58 

Santa Barbara 4.05 15.29 San Mateo 0.94 3.23 

Tehama 5.38 14.64 Yolo 1.17 3.22 

Siskiyou 3.96 11.82 San Joaquin 1.03 3.19 

Shasta 4.26 11.76 Sacramento 0.89 2.29 

Fresno 3.68 10.61 Kings 0.74 2.18 

San Benito 3.50 10.49 Tuolumne 0.75 2.05 

Santa Clara 2.71 9.96 Amador 0.75 1.99 

Sonoma 2.65 8.42 El Dorado 0.69 1.91 

Stanislaus 2.36 7.66 Placer 0.68 1.88 

Tulare 2.61 7.56 Yuba 0.68 1.79 

Merced 2.66 7.49 Santa Cruz 0.38 1.29 

Lake 2.20 6.45 Sutter 0.32 0.82 

Alameda 1.46 5.53 Nevada 0.30 0.80 

Humboldt 1.69 5.20 Del Norte 0.22 0.69 

Mendocino 1.71 5.16 Plumas 0.25 0.68 

Glenn 1.71 4.85 Ventura 0.03 0.10 

Marin 1.40 4.84 
San 
Francisco 0.00 0.01 

Contra Costa 1.39 4.77 Trinity 0.00 0.00 

Colusa 1.63 4.43 Total 106.30 321.76 

Mariposa 1.52 4.31     

 
Table A1. Estimated total carbon stocks (Tg C) on rangelands by depth and county. 
Counties are in descending order based on total carbon in the 10 – 40 cm depth. 
Note that some counties are only partially within our study area (see Fig 1).  
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